N. V. Shorina, G. A. Golubeva, L. A. Sviridova, V. N. Torocheshnikov, and A. V. Sadovoi

In the presence of phosphorus oxychloride N-acylaminoindolines rearrange to 7-a-cyanoalkyl(aralkyl)indolines. These have been converted to the corresponding amines, acids, and indoles.

It is known that β -arylhydrazides are heterocyclized to 2-aminoindoles in the presence of phosphorus halides (the Kost reaction) [1]. We have previously shown that phosphorus oxychloride reacts with N-acylaminotetrahydroquinolines to give the novel tricyclic 5-aminolilolidines [2]. In the present study we chose the N-acylaminoindolines Ia-i whose synthesis and structures have been reported in [3]. N-acylaminoindoles Ia-i react with phosphorus oxychloride in absolute dioxane to give the ortho-aminobenzylcyanides IIIa-i in 45-70% yields. Evidently compounds I react via the Kost mechanism but the expected tricyclic structure analogous to that obtained earlier for N-acylaminotetrahydroquinolines (route A) is not realized. The intermediate II instead yields the nitriles III (Table 1).

*I, IIIa-h $R^2 = H$, i $R^2 = CH_3$; a-c, e-i X = H, d X = Br, II $R^1 = R^2 = X = H$, $R^3 = CH_3$.

This conversion is a further convincing confirmation of the Kost rearrangement scheme proposed earlier by us [4]. The synthesized compounds III have an independent synthetic interest as starting materials for less readily available 7-substituted indoles.

M. V. Lomonosov Moscow State University, Moscow 119899. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1185-1189, September, 1990. Original article submitted December 22, 1989.

Com-	Empirical	°C	IR spe V, cn	ectrum, $1^{-1 \times 1}$	PMR spect	rum,δ, ppm (J, Hz)	* 2
pound	formula	mp, -u	CN	NH	R ¹ , 2-H	R², 3-11	R ³
][]a	$C_{11}H_{12}N_2$	0i 1	2240	3420	3,55 (2H, t),	3.15 (211, $t, J = 8.00$)	1,50 (3H, d)
IIIp	$C_{16}H_{14}N_2$	0i1	2240	3400	3.55 (2H, t, $1-8.00$)	3.15 (2H, t, J=8.00)	6,50 7,50 (5H)
Illc	$C_{15}H_{19}N_2$	83 84	2230	3415	3.55 (2H, t, $1-8.00$)	2,95 (2H, t , $J = 8.00$)	1.30 2,40
IIIq	$C_{16}H_{13}BrN_2$	123 124	2235	3415	3.50 (2H. t,	2,95 (2H, t , $J = 8.00$)	7.007,50
Ille	$C_{12}H_{16}N_2$	011.	2235	3390	J = 8,00) 1,04 (d, $J = 6.54$)* ³ ; 1,06 (d, $J = 7,51$): 3,80 (1H, m)	2,36 (111, ^m): 2,91 (1H, m)	$ \begin{array}{l} (311, m) \\ 1,30 & (d, \\ J = 7,14)^{*3}; \\ 1,33 & (d, \\ I = 7,14) \end{array} $
III£	$C_{17}H_{16}N_2$	0i1	2250	33 95	0.97 (t $J = 6.17$)* ³ ; 0.98 (d, $J = 6.12$); 3.75 (111, m.)	2,37 (1H, d, d, $J_{23}=9,00$); = 16,00; $J_{23}=9,00$); 2,90 (1H, d, d $J_{23}=9,00$); = 15.70; $J_{23}=8,25$)	7,037,30 (511, m)
IIB	C ₁₇ H ₁₆ N ₂	0il	2240	3400	7,007,28 (5H, m); 4,80 (\pm , $J = -9,20$)*; 4,82 (\pm .	$\begin{array}{c} 2.68 & (1H, 2 \text{ d. d});\\ 3.275 & (1H, 2 \text{ d. d});\\ Jgem=15.67; \ J_{25}{=}9.30) \end{array}$	1,385 (4 J = 7.17)* ³ ; 1,390 (\mathbf{d} .
lljh	$C_{22}H_{18}N_2$	98 , 100	2240	3375	J = 9,20 7,20,7,50 (5H. m); 4,96 (1H, t) J = 9,50)	2.88 (111, d.d. Jgem=) = 15.96; J_{23} = 9.00); 3.49 (111, d.d. J. gem ⁼) = 15.96; J_{23} = 9.3(1)	7 = 7, 17 7.207,50 (5Hm)
Шŕі	C ₁₈ H ₁₈ N ₂	173 174	2220	3450	1.022 (d, $J = 6.61$); 1.033 (d, $J = 6.63$); 3.91 (1H, m)	1,12 (d, $J = 1,16$) ^{*3} ; 1,16 (d, $J = 7,16$); $3,22(1H, m)$	7,317,44 (511, m)

TABLE 1. Characteristics for Compounds Illa-i

TABLE 1. (continued)

Com-	Empirical	00	IR spe v, cm	ctrum, 1%1		PMR spec	etrum, δ , ppm (J, Hz)* ² .	. <u> </u>	Yield,
pound	formula	mp, °C	CN	NH	7′-CH	5-H	4-H, 6-H	NH (1H)	%
]]]a	$C_{11}H_{12}N_2$	Oil	2240	3420	3.80 (1H,m)		6,607,30 (3H, ^m)	3,90 s	44
Шр	$C_{16}H_{14}N_2$	0i1	2240	3400	5,20 (1H,s)		6,507,50 (3H, m)	3,95 s	56
IIIc	$C_{15}H_{19}N_2$	83 84	2230	3415	_		6,307,50 (3H,m)	4,30 s	70
l I I q	$\mathrm{C_{16}H_{13}BrN_2}$	123 124	2235	3415	5,00 (1H, S)		7,007,50 (3H , m)	5,30 s	56
Ille	$C_{12}H_{16}N_2$	0i1	2235	3390	3,82 (114, m)	6,41 (1H, t, J = 7,40)	6.77 (1H,m, 4-H); 6.81 (1H,m, 6-H)	4,73 s	55
III£	C ₁₇ H ₁₆ N ₂	0i 1	2250	3395	5,22 (111, s)	6,44 (1H, t, J = 7,60)	6.80 (211, $d, J=7.51$)	4,65 s	50
IIB	C ₁₇ H ₁₆ N ₂	0i 1	2240	3400	3.95 (1H, m)	6.50 (1H. t) J = (7,56)	6.905 (1H.d.d , $I_{45} = 7,76, 4$ -H); 6.809 (1H,d.d , $I_{56} = 7,41, 6$ -H)	5,21 s	57
lllh	C ₂₂ H ₁₈ N ₂	98 100	2240	3375	5,50 (1H,S)	6,71 (1H, t, J=7,36)	7.037 (1H, d. $J = 7.12$, 6-H); 7.025 (1H, d. $J = 7.12$, 4-H)	5,25 s	71
IIŀi	C ₁₃ H ₁₈ N ₂	173 174	2220	3450	5,441 s*4; 5,467 s	6,699 (t) $J = 7,71)^{*+};$ 6,705 (t, J = 7,60)	7.07 (111, \mathbf{m} , 4.H); 7.035 (1H, $\mathbf{d}_{\star}\mathbf{d}$ $J_{53} = 7.36; J_{45} = 1610, 6.H)$	4,70d	47

*In Vaseline mull.

**PMR spectra for IIIa-c in CDCl₃, IIId in CD₂Cl₂, IIIe-i in (CD₃)₂CO.

^{***}Integrated intensity of 3H for the doubled set of signals.

^{****}Integrated intensity of 1H for the doubled set of signals.

f Ille-i
5
Spectra
¹³ C NMR
ILE 2.
P.

	Chemical shift, ppm	7 '-CH ₃	19,211; 19,095 19,233 19,233			
		7'-CN	121,869 119,896 122,036 119,892 120,063			
					C _(1')	38,235; 38,325 38,080; 38,190 40,173 38,427 39,965; 39,991
		2-CH3	22,629; 22,484 22,470 22,470 16,295			
		C ₍₀₎	129,984; 130,133 130,133 130,199; 130,454 129,547 128,902 128,902 128,542			
				C ₍₈₎	149,027; 149,157 149,380; 149,530 149,330 149,588 148,829; 148,909	
		C ₁₇)	117,659: 117,596 116,394 117,1899: 117,147 116,446 116,501			
		Chemical sh	C ₍₆₎	125,272; 125,154 126,734; 126,649 125,731; 125,659 126,863; 126,494 126,895; 126,455		
			C ₍₅₎	118.676 118,693 119,320 119,197 119,028; 119,062		
of Ille-i		C ₍₄₎	124,521 124,970; 124,851 124,593; 124,548 124,957; 124,877 124,150; 124,079			
R Spectra		C ₍₃₎	29,827 29,807; 29,807; 29,807 29,706 29,808			
2. ¹³ C NM		C.21	55.538; 55.538; 55.443; 55.443; 55.443; 55.837 63.558; 63.774 63.774			
TABLE	t	com-	III.e IIIE IIIE III.h III.h			

*13.616 and 13.863 ppm (3-CH₃).

The IR spectra of the ortho-aminobenzylcyanides show characteristic nitrile (2240) and amino group (3400 cm^{-1}) absorptions. The PMR spectra show the absence of the acyl residue signals of Ia-i and the presence of signals for the protons of the benzene 7-substituent. There is also a change in the appearance of the aromatic ring signals in line with the altered substitution of the ring. Examples of the Kost rearrangement are known in which not the ortho- but the para-aminobenzylcyanides are formed, i.e., the substituent occurs at position 5 in the benzene ring [5]. However, the high-resolution PMR signals for the aromatic protons of IIIe-i show that the 5 position is free. In particular, the 5-H proton is seen as a characteristic triplet at 6.4-6.7 ppm with an intensity of one proton.

The presence of a substituent in position 2 of the indole (IIIe-h) or in positions 2 and 3 (IIIi) means that 2 or 3 asymmetric centers are present in the molecule leading to a substantial mixture of diastereomers. Their high resolution PMR spectra show doubling of the signals (ratio 1:1) for some protons, e.g., the protons of $2-CH_3$, $7-CH_3$, and 7-CH and 2-H, 3-H, and 5-H in certain compounds. In the ortho-aminobenzylcyanides IIIe-i the $3-H^{\bullet}$ and $3-H^{\circ}$ protons are diastereotopic and differ in their ¹³C NMR spectra by about 0.5 ppm. The ¹³C NMR spectra also show doubling of practically all of the carbon atom signals (see Table 2).

The ortho-aminobenzylcyanides are of interest not only as alternative Kost reaction products (which thus confirm the previously proposed scheme) but also as synthons for 7-aminoalkyl(aralkyl)indolines, 7-carboxyalkyl(aralkyl)indolines, and 7-acyanoalkyl(aralkyl)indoles. Preparation of these by other methods is almost impossible.

Reduction of III with lithium aluminum hydride to the corresponding 7-aminoalkyl(aralkyl)indolines IV goes in quantitative yield. Hydrolysis of the ortho-aminobenzylcyanides occurs in dilute hydrochloric acid in a sealed ampul to form the 7carboxyalkyl(aralkyl)indolines V. The greatest interest is in the synthesis of the 7- α -cyanoalkyl(aralkyl)indoles VI which, in turn, can be used in the preparation of variously substituted indoles.

EXPERIMENTAL

Infra-red spectra were measured on a UR-20 instrument using Vaseline and hexachlorobutadiene mulls. ¹H and ¹³C NMR spectra were measured on Tesla BS-467A (60 MHz) and VXR 300 (300 MHz) instruments with HMDS internal standards. Mass spectra were recorded on a Finnigan MAT 112 S instrument. The purity of the synthesized materials was monitored by TLC on Silufol UV-254 plates in the system hexane-ethyl acetate. The eluent ratio was selected individually for each substrate.

Elemental analytical data for C, H, and N agreed with that calculated. The structures of Va, b and VIe, i were also confirmed by mass spectrometry.

N-Propionylamino-2-phenyl-2,3-dihydroindole (Ig, $C_{17}H_{18}N_2O$) was obtained by the method described in [3] in 80% yield as white crystals with mp 143-144°C. IR spectrum: 1680 (CO), 3250 cm⁻¹ (NH). PMR spectrum (in CDCl₃): 1.00 (3H, t, J = 8.5, CH₃); 2.03 (2H, q, J = 8.5, CH₂); 3.30 (2H, m, 3-H); 4.60 (1H, m, 2-H); 6.50-7.60 ppm (10H, m, arom + NH protons).

7-a-Cyanoalkyl(aralkyl)-2,3-dihydroindoles IIIa-i. Phosphorus oxychloride (2 mmoles) was added to a solution of the corresponding N-acylaminoindoline I (1 mmole) in absolute dioxane and heated for 2 h. After cooling, the solution was made alkaline with dilute NaOH (pH 8-9), extracted with benzene, and dried with Na_2SO_4 . The oil remaining after distillation of solvent was purified by flash chromatography on a Silpearl grade silica gel column using hexane-ethyl acetate. Compounds IIIa, b, e remained as oils, unstable to storage and thus hindering measurement of elemental analytical data. They were therefore isolated as the acetyl derivatives III'a, b, e and were obtained by acylation of the corresponding orthoaminobenzylcyanides with acetyl chloride in the presence of triethylamine. The melting points were 85-86, 115-116, and 152-153°C, respectively.

7-Aminoalkyl(aralkyl)-2,3-dihydroindoles (IVa, b) were obtained using a reported method [6] by reduction of IIIa, b with lithium aluminum hydride in benzene in the presence of triethylbenzylammonium chloride. Amine IVa

($C_{11}H_{16}N_2$ ·2HCl) was isolated as the dihydrochloride from dry ether using an alcoholic solution of HCl [white crystals, mp 187-189°C (decomp.), quantitative yield]. IR spectrum: 2900 cm⁻¹ (NH). PMR spectrum (in DMSO-D₆): 1.30 (3H, d, J = 8 Hz, 7'-CH₃); 3.30 (2H, t, J = 7.5 Hz, 3-H); 3.75 (2H, t, J = 7.5 Hz, 2-H); 4.60 (1H, br.q, 7'-CH); 7.32 (3H, m, arom. protons); 7.70 ppm (3H, br.s, NH). Amine IVb ($C_{22}H_{24}N_2O_3$) was obtained as the triacetyl derivative by acylation of the starting 7-aminoaralkylindoline with excess acetyl chloride in the presence of triethylamine (yield 80%, white crystals, mp 140°C, from benzene/pentane). IR spectrum: 1660, 1690, 1710 cm⁻¹ (CO). PMR spectrum (in CDCl₃): 2.15 (9H, m, COCH₃); 2.90 (2H, t, J = 7 Hz, 3-H); 3.75 (2H, t, J = 7 Hz, 2-H); 4.45 (2H, d, J = 7 Hz, 7'-CH₂); 5.05 (1H, m, 7'-CH); 6.80-7.30 ppm (8H, m, arom. protons).

7-Carboxyalkyl(aralkyl)-2,3-dihydroindoles (Va, b) were obtained by heating the corresponding compound III for 2 h with dilute hydrochloric acid in a sealed ampul at 150°C. After evaporation of water the crystalline hydrochloride was washed with acetone to give Va ($C_{11}H_{13}NO_2$ ·HCl) in 42% yield as white crystals with mp 210-212°C (decomp.). IR spectrum: 1710 (COOH), 2900 cm⁻¹ (NH). PMR spectrum (in D₂O): 1.00 (3H, d, J = 8 Hz, 7'-CH₃); 2.80 (2H, t, J = 7.5 Hz, 3-H); 3.50 (2H, t, J = 7.5 Hz, 2-H); 5.05 (1H, m, 7'-CH); 6.95 ppm (m. arom. protons). Mass spectrum: M⁺: 192. Vb ($C_{16}H_{15}NO_2$ ·HCl) was obtained in 48% yield as white crystals with mp 225-227°C (decomp.). IR spectrum: 1720 (COOH), 3000 cm⁻¹ (NH). PMR spectrum (in CD₃OD): 3.95 (2H, t, J = 8 Hz, 3-H); 4.35 (2H, t, J = 8 Hz, 2-H); 5.30 (1H, s, 7'-CH); 7.35 ppm (8H, m, arom. protons). Mass spectrum: M⁺: 254.

7-a-Cyanoalkyl(aralkyl)indoles (VIa, e, i) were obtained by a known method [7] by refluxing the corresponding indolines in xylene with chloranil. Flash chromatography on a Silpearl silica gel column using hexane-ethyl acetate (3:1) gave indole VIa $(C_{11}H_{10}N_2)$ in 52% yield as white crystals with mp 102-103°C. IR spectrum: 2240 (CN), 3380 cm⁻¹ (NH). PMR spectrum (in CDCl₃): 1.60 (3H, d, J = 8 Hz, 7'-CH₃); 4.00 (1H, q, J = 8 Hz, 7'-CH); 6.15-7.45 (5H, m, arom. protons); 8.4 ppm (1H, br.s, NH). VIe $(C_{18}H_{16}N_2)$ in 45% yield as a colorless oil. IR spectrum: 2240 (CN), 3380 cm⁻¹ (NH). PMR spectrum (in CDCl₃): 1.55 (3H, d, J = 8 Hz, 7'-CH₃); 2.25 (3H, s, 2-CH₃); 4.00 (1H, q, J = 8 Hz, 7'-CH); 6.15-7.45 (4H, m, arom. protons); 8.40 ppm (1H, br.s, NH). Mass spectrum: M⁺⁻ 184. VIi $(C_{18}H_{16}N_2)$ in 43% yield as a light yellow oil. IR spectrum: 2240 (CN), 3390 cm⁻¹ (NH). PMR spectrum (in CDCl₃): 2.40 (CN), 3390 cm⁻¹ (NH). Mass spectrum (in CDCl₃): 4.95 (1H, s, 7'-CH); 6.75-7.15 (8H, m, arom. protons); 7.30 ppm (1H, br.s, NH). Mass spectrum M⁺⁻ 260.

LITERATURE CITED

- 1. A. N. Kost, G. A. Golubeva, and Yu. N. Portnov, Dokl. Akad. Nauk SSSR, 200, 342 (1971).
- N. V. Shorina, G. A. Golubeva, L. A. Sviridova, and V. N. Torocheshnikov, *Khim. Geterotsikl. Soedin.*, No. 3, 332 (1990).
- N. V. Shorina, G. A. Golubeva, L. A. Sviridova, and V. N. Torocheshnikov, *Khim. Geterotsikl. Soedin.*, No. 3, 337 (1990).
- 4. Yu. N. Portnov and G. A. Golubeva, Khim. Geterotsikl. Soedin., No. 9, 1155 (1985).
- 5. R. Fusko and F. Sannikolo, Khim. Geterotsikl. Soedin., No. 4, 504 (1978).
- 6. V. Gevorgyan and E. Lukevics, J. Chem. Soc., Chem. Commun., 18, 1234 (1985).
- 7. A. P. Terent'ev, M. N. Preobrazhenskaya, A. S. Bobkov, and G. M. Sorokina, Zh. Obshch. Khim., 29, 2541 (1959).